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NOTES ON HARMONIC ANALYSIS

PART I: THE FOURIER TRANSFORM

KECHENG ZHOU AND M. VALI SIADAT

Abstract. Fourier Transforms is a first in a series of monographs we present on harmonic
analysis. Harmonic analysis is one of the most fascinating areas of research in mathematics.
Its centrality in the development of many areas of mathematics such as partial differen-
tial equations and integration theory and its many and diverse applications in sciences and
engineering fields makes it an attractive field of study and research.

The purpose of these notes is to introduce the basic ideas and theorems of the subject
to students of mathematics, physics or engineering sciences. Our goal is to illustrate the
topics with utmost clarity and accuracy, readily understandable by the students or interested
readers. Rather than providing just the outlines or sketches of the proofs, we have actually
provided the complete proofs of all theorems. This will illuminate the necessary steps taken
and the machinery used to complete each proof.

The prerequisite for understanding the topics presented is the knowledge of Lebesgue
measure and integral. This will provide ample mathematical background for an advanced
undergraduate or a graduate student in mathematics.

1. Fourier Transforms for L1(R)

Definition 1.1. For f ∈ L1(R), the Fourier transform f̂ of f is defined as

(1.1) f̂(y) =

∫ ∞

−∞
f(x)e−ixydx

for all real y ∈ R.

It is easy to see that Fourier transform is a lineaer operator, i.e., (f + g)(̂y) = f̂(y) + ĝ(y)

and (kf)(̂y) = kf̂(y).

http://arxiv.org/abs/1709.03377v1
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Theorem 1.2 (Riemann-Lebesgue Lemma). If f ∈ L1(R), then f̂(y) → 0 as y → ±∞.
Proof: First suppose that f is a characteristic function of an interval [a, b]. Its Fourier

transform is ∫ b

a
e−ixydx =

e−iay − e−iby

iy
, y 6= 0,

which tends to zero. Therefore, a linear combination of characteristic functions of intervals,
i.e., a step function, satisfies the Riemann-Lebesgue lemma. Such functions are also dense
in L1(R). Now let f ∈ L1(R) and let fn ∈ L1(R) be a sequence of step functions such that
fn → f in L1(R). Then

|f̂n(y) − f̂(y)| = |(fn − f )̂ (y)| ≤ ||fn − f ||1 → 0.

Note that the limit is uniform in y ∈ R. Since

|f̂(y)| ≤ |f̂n(y) − f̂(y)| + |f̂n(y)|,
we can choose n large enough so that the first term on the right is small and then for that fixed
n, we let |y| large enough so that the second term is also small. This completes the proof. �

Theorem 1.3. Suppose that f(x)(1 + |x|) is integrable. Then,

(1.2) (f̂)′(y) = (−ixf(x))̂ (y).

Proof: Note that, by assumption, both f and xf(x) are integrable. We write

(f̂)′(y) = lim
h→0

∫ ∞

−∞
f(x)

e−ix(y+h) − e−ixy

h
dx

= lim
h→0

∫ ∞

−∞
f(x)e−ixy e

−ixh − 1

h
dx.

Note that the integrand converges to f(x)e−ixy(−ix) pointwise as h→ 0 and |f(x)e−ixy e−ixh−1
h | ≤

|xf(x)| for all small |h|. 1 Hence, by Lebesgue’s dominated convergence theorem ,

(f̂)′(y) = lim
h→0

∫ ∞

−∞
f(x)e−ixy e

−ixh − 1

h
dx =

∫ ∞

−∞
(−ixf(x))e−ixydx. �

Theorem 1.4. If f is continuously differentiable with compact support, then

(1.3) (f ′)(̂y) = iyf̂(y).

Proof: Integration by parts. �

Definition 1.2. The convolution of f and g is defined as

(1.4) (f ∗ g) (x) =

∫ ∞

−∞
f(x− t)g(t)dt,

1Estimating the remainder (both Lagrange form and integral form) of Taylor’s series for eix we obtain the
estimation

|eix −
n∑

k=0

(ix)k

k!
| ≤ min(

|x|n+1

(n + 1)!
,
2|x|n

n!
).

Note that the first estimate is better for small |x|, while the second is better for large |x|. Choosing n = 0 and
considering small |h| we get the inequality in context.
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whenever the integral exists.

In the following, C(R) denotes the space of all continuous functions on R with ||f ||C =
supx∈R|f(x)| < ∞ and C0(R) the space of all continuous functions on R that vanishes at
infinity, i.e., for any ǫ > 0, there is a compact F ⊂ R such that |f(x)| < ǫ for x 6∈ F. Then
by F. Riesz’ theorem, (C0(R))∗ = M(R), where M(R)
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Also note that the expression on the right belongs to L1(R). Hence, the integral
∫

(

∫
|f(x− t)g(t)|dx)dt = ||f ||1||g||1

exists as a finite number. Therefore, by Fubini’s theorem the integral
∫

(

∫
|f(x− t)g(t)|dt)dx

exists and is equal to ||f ||1||g||1. This implies that

∫
|f(x− t)g(t)|dt exists a.e. and belongs

to L1.
To prove (f ∗ g)̂ (y) = f (̂y) · ĝ (y), we observe that

(f ∗ g)̂ (y) =

∫
(

∫
f(x− t)g(t)dt)e−ixydx

=

∫
g(t)e−ity(

∫
f(x− t)e−iy(x−t)dx)dt = f̂(y)ĝ(y).

The change in the order of integration is justified by Fubini’s theorem. �

It is easy to see that convolution obeys the commutative and distributive laws of algebra in
L1(R), i.e., f ∗ g = g ∗ f and f ∗ (g+ h) = f ∗ g+ f ∗h. The natural question is whether there
is a multiplicative identity, i.e., given f ∈ L1(R), is there e ∈ L1(R) such that f ∗ e = f? The
answer is, in general, no since convolution exhibits continuity property and cannot be equal
to a discontinuous f. However, we may seek a sequence of functions en, called approximate
identity, with the property that en ∗ f → f.

Definition 1.3. An approximate identity en on R is a sequence of functions en such that

en ≥ 0,

∫
en(x)dx = 1, and for each δ > 0,

lim
n→∞

∫

|x|>δ
en(x)dx = 0.

Theorem 1.7. If f ∈ C0(R), then en ∗ f → f uniformly. If f ∈ Lp(R), 1 ≤ p < ∞, then
en ∗ f → f in Lp(R). If f ∈ L∞(R), then en ∗ f → f in the weak* topology of L∞(R) as a dual

of L1(R), that is,

∫
(en ∗ f)(x)g(x)dx→

∫
f(x)g(x)dx for all g ∈ L1(R).

Proof: Note that if f ∈ C0(R), then f is uniformly continuous on R and for any given
ǫ > 0, there is a δ > 0 such that for any t with |t| < δ, |f(x − t) − f(x)| < ǫ for all x ∈ R.
Hence,

|(en ∗ f)(x) − f(x)| ≤
∫

R
|f(x− t) − f(x)|en(t)dt

=

∫

|t|<δ
|f(x− t) − f(x)|en(t)dt+

∫

|t|≥δ
|f(x− t) − f(x)|en(t)dt

≤ ǫ+ 2M

∫

|t|>δ
en(t)dt,
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where M = supx∈R |f(x)|. Since limn→∞
∫
|x|>δ en(x)dx = 0, en ∗f → f uniformly. In the case

of f ∈ L∞(R), the proof is similar.
If f ∈ Lp(R), 1 ≤ p <∞, then

∫

R

|(en ∗ f)(x) − f(x)|pdx ≤
∫

R

|
∫

R

(f(x− t) − f(x))en(t)dt|pdx

≤
∫

R

(

∫

R

|f(x− t) − f(x)|p |en(t)|dx)dt

=

∫

R

||f(· − t) − f(·)||pp |en(t)|dt.

Given any ǫ > 0, there is a δ > 0 such that ||f(· − t) − f(·)||p < ǫ whenever |t| < δ. Hence,
∫

R
||f(· − t) − f(·)||pp |en(t)|dt

=

∫

|t|<δ
||f(· − t) − f(·)||pp en(t)dt+

∫

|t|≥δ
||f(· − t) − f(·)||pp en(t)dt

≤ ǫp + 2||f ||pp
∫

|t|>δ
en(t)dt.

Since limn→∞
∫
|x|>δ en(x)dx = 0, the result follows. �

Theorem 1.8. If f has compact support and a continuous derivative, and g ∈ L1(R), then
f ∗ g ∈ L1(R) has a continuous derivative.

Proof: First, we prove

d

dx
(

∫
f(x− t)g(t)dt) =

∫
f ′(x− t)g(t)dt,

which is showing that

lim
h→0

∫ ∞

−∞
(
f(x+ h− t) − f(x− t)

h
)g(t)dt =

∫
f ′(x− t)g(t)dt.

Note that the integrand on the left converges to f ′(x − t)g(t) pointwise (in t) as h → 0.

Moreover, f(x+h−t)−f(x−t)
h = f ′(c), where c is between x + h − t and x− t. If f has compact

support S, then so does f ′. Therefore, |f(x+h−t)−f(x−t)
h | = |f ′(c)| ≤ supc∈S|f ′(c)| ≤ M with

some M > 0 for all t ∈ (−∞,∞). Now the desired limit follows from Lebesgue’s dominated
convergence theorem.

To prove that
∫
f ′(x− t)g(t)dt is continuous, we note that

|
∫
f ′(x+ h− t)g(t)dt−

∫
f ′(x− t)g(t)|

= |
∫
f ′(t)(g(x + h− t) − g(x− t))dt|

≤ ||f ′||c||g(· + h) − g(·)||1.

Then the (uniform) continuity of

∫
f ′(x− t)g(t)dt follows from the continuity of g in mean.

�
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The following corollary follows immediately from Theorems 1.7 and 1.8.

Corollary 1.1. Let en
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That is, f is the inverse Fourier transform of f̂ .

Proof: If t 6= 0, let h(x) = f(x + t). If f(x) satisfies |f(x) − f(t)| ≤ K|x − t|α for x
neart 6= 0
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Proof: Assuming that x > 0 and integrating

I =
1

2π

∫

ΓR

2

1 + z2
eixzdz,

where ΓR consists of the upper semicircle CR and the line segment [−R,R] on the x-axis, we
see that

I = Resz=i



NOTES ON HARMONIC ANALYSIS 9

In particular, let z = −iy
2 . Then we have

∫ ∞

−∞
e−x2−ixydx =

√
πe−y2/4. �

Theorem 1.13 (Inversion Theorem). Let f ∈ L1(R), and f̂ ∈ L1(R), then

(1.8) f(x) =
1

2π

∫ ∞

−∞
f̂(y)eixydy

for almost all real x ∈ R. The integral is commonly known as the inverse Fourier transform.

Proof: Consider the Gauss-Weierstrass Kernel, W (x, α) = 1√
πα
e−

x2

α . A straightforward

calculation shows that W (·, α)̂ (t) = e−
αt2

4 . By integrating f̂ against W ,̂ and then applying
Fubini’s theorem and the fact that W (x, α) is an approximate identity, we get

∫ ∞

−∞
f̂(ξ)eiξxW (·, α)̂ (ξ)dξ

=

∫ ∞

−∞
(

∫ ∞

−∞
f(t)e−iξtdt)eiξxe−

αξ2

4 dξ

=

∫ ∞

−∞
f(t)(

∫ ∞

−∞
e−

αξ2

4 e−iξ(t−x)dξ)dt

=

∫ ∞

−∞
f(t)2πW (t− x, α)dt

= 2π

∫ ∞

−∞
f(x− t)W (t, α)dt→ 2πf(x) a.e. as α→ 0+

On the other hand, by Lebesgue’s dominated convergence theorem,

lim
α→0+

∫ ∞

−∞
f̂(ξ)eiξxW (·, α)̂ (ξ)dξ =

∫ ∞

−∞
f̂(ξ)eiξxdξ.

The theorem follows. �

As an application of the inversion theorem, we now prove that the Fourier transform of a
product is the convolution of the Fourier transforms.

Theorem 1.14. Assume that f, g ∈ L1(R) and f̂ ∈ L1(R) (or ĝ ∈ L1(R)). Then,

(1.9) (fg)̂ (x) =
1

2π
(f̂ ∗ ĝ)(x).
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Proof: By the inversion theorem, f is bounded and so, fg ∈ L1(R). Hence,

(fg)̂ (x) =

∫ ∞

−∞
f(y)g(y)e−ixydy

=

∫ ∞

−∞
g(y)e−ixy(

1

2π

∫ ∞

−∞
f̂(t)eiytdt)dy

=
1

2π

∫ ∞

−∞
f̂(t)(

∫ ∞

−∞
g(y)e−ixyeiytdy)dt

=
1

2π

∫ ∞

−∞
f̂(t)ĝ(x− t)dt

=
1

2π
(f̂ ∗ ĝ)(x).

The change in the order of integration is justified by Fubini’s theorem, since due to bounded-
ness of f̂ , f̂g ∈ L1(R). �

We now investigate the question of uniqueness of Fourier transform, i.e, f̂ = ĝ implies f = g.
To show this, since Fourier transform is a linear operator, it suffices to show that f̂ = 0 implies
f = 0 a.e.

Theorem 1.15 (Uniqueness Theorem). If f ∈ L1(R) and f̂ = 0 everywhere (f̂ is always
continuous), then f = 0 a.e.

Proof: Let en(x) be an approximate identity with compact support and continuous de-

rivative. By Theorem 1.6, (en ∗ f )̂ = ênf̂ = 0 everywhere. Since by Theorem 1.8, en ∗ f
is continuous and differentiable, by the inversion theorem, en ∗ f = 0 everywhere. But by
Theorem 1.7, en ∗ f → f in L1(R); so it follows that f = 0 a.e. �

Definition 1.4. For µ ∈ M(R) (bounded Borel measure on R, i.e., |µ|(R) <∞), define the
Fourier-Stieltjes transform µ̂ (y) as

µ̂ (y) =

∫ ∞

−∞
eixydµ(x).

Clearly, the Fourier-Stieltjes transform defines a bounded linear transform from M(R) to
C.

Theorem 1.16 (Uniqueness Theorem). If µ̂(y) = 0 for a.e. y, then µ = 0.

Proof: Since (C0(R))∗ = M(R), to prove µ = 0 we need only to show that for all h ∈
C0(R),

∫
h(t)dµ(t) = 0. This is equivalent to showing that for all h ∈ C0(R), (h ∗ µ)(0) = 0,

where (h ∗ µ)(x) =

∫ ∞

−∞
h(x− t)dµ(t). Observe also that h(x) ∈ C0(R) if and only if h(−x) ∈

C0(R).
Assume that µ̂ = 0. Then for all f ∈ L1(R), fˆ∗ µ(x) = (f ∗ µ̂ )(x) = 0. Hence, if we prove

that {fˆ : f ∈ L1(R)} is dense in C0(R), then for each h ∈ C0(R) there is fn ∈ L1(R) such
that fn̂ → h in C0(R). Since fn̂ ∗ µ(x) → h ∗ µ(x) at each x, h ∗ µ(x) = 0.
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To show that {fˆ: f ∈ L1(R)} is dense in C0(R), we let

F (x) =
1√
2π

(
sin(x/2)

x/2
)2

and let Fρ(x) = ρF (ρx). Consider the integral

(h ∗ Fρ)(x) =
2

πρ

∫ ∞

−∞
h(x− u)

sin2(ρu/2)

u2
du.

Define

F = {(h ∗ Fρ)(x) : h ∈ C0(R)
⋂
L1(R); ρ > 0}.

Clearly, F is a subset of C0(R)
⋂
L1(R) and is dense in C0(R).

Let h ∈ C0(R)
⋂
L1(R). Then (h ∗ Fρ)̂ (y) = ĥ (y)(Fρ )̂ (y). Since h ∈ L1, ĥ ∈ C0(R).

Moreover,

Fρ̂ (y) =

{
1 − |y|

ρ if |y| ≤ ρ
0 if |y| > ρ

belongs to L1(R). Therefore, (h ∗ Fρ)̂ ∈ L1(R). It follows from the inversion theorem that
h∗Fρ is the Fourier transform of a function in L1(R). Hence, F is a subset of {fˆ: f ∈ L1(R)}.
Since F is dense in C0(R), {fˆ: f ∈ L1(R)} is dense in C0(R). �

2. Kernels on R

We define the Dirichlet, Fejér, and Poisson kernels on R by defining their Fourier transforms,
see H. Helson [2].

D̂t(y) =

{
1 if |y| ≤
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(D̂t ∗ D̂t)(y) =

∫ ∞

−∞
D̂t(y − τ)D̂t(τ)dτ

=

∫ t

−t
D̂t(y − τ)dτ

=

∫ y+t

y−t
D̂t(u)du.

To calculate the last integral, we consider two cases. If |y| ≥ 2t, then the intervals [y−t, y+t]
and [−t, t] are disjoint so that the integral equals zero; if |y| < 2t, then either y + t or y − t is
in (−t, t), but not both, so that the integral equals 2t− |y|. Combining both results we get,

(D̂t ∗ D̂t)(y) =

∫ y+t

y−t
D̂t(u)du =

{
2t− |y| if |y| ≤ 2t
0 if |y| > 2t

= 2tK̂2t(y).

Also, by Theorem 1.14 we have that,

(Dt ·Dt)̂ (x) =
1

2π
(D̂t ∗ D̂t)(x)

=
1

2π
(2tK̂2t(x)).

Therefore, it follows from the inversion theorem that (Dt ·Dt)(x) = 1
2π (2tK2t(x)), or

2tK2t(x) =
1

2π
(2πDt(x))2.

Hence, we obtain the Fejér kernel

Kt(x) =
1

2πt
(
sin( tx

2 )
x
2

)2.

Kt(x) is positive and integrable. Its Fourier transform is the function K̂t(y) by the inversion

theorem. Moreover,

∫
Kt(x)dx = 1 because K̂t(y) = 1 at y = 0. For any ǫ > 0,

∫

|x|>ǫ
Kt(x)dx ≤ 1

2πt

∫

|x|>ǫ

4

xj
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A direct computation of the inverse Fourier transform of P̂u(y) gives

Pu(x) =
1

2π

∫ ∞

−∞
P̂u(y)eixydy

=
1

2π

∫ ∞

−∞
e−u|y|eixydy

=
1

2π

∫ 0

−∞
euyeixydy +

1

2π

∫ ∞

0
e−uyeixydy

=
1

2π

∫ 0

−∞
ey(u+ix)dy +

1

2π

∫ ∞

0
e−y(u−ix)dy

=
1

2π
(

1

u+ ix
+

1

u− ix)

=
u

π(u2
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Definition 2.1. For any f ∈ Lp(R), 1 ≤ p <∞, we define the Poisson integral of f as

(2.2) F (x+ iu) = Pu ∗ f(x) =
1

π

∫

R

uf(s)

u2 + (x− s)2ds.

Since Pu ∈ Lq(R), q conjugate exponent of p, F (x+ iu) is defined as a continuous function
of x. 6 Moreover, F (x+ iu) provides a harmonic extension of f to the upper half plane. This
can be verified directly.

Theorem 2.2. The Poisson integral has a semigroup property: Pu ∗Pv = Pu+v for all positive
u and v.

Proof: We have that

ˆ(Pu ∗ Pv)(y) = P̂u(y) · P̂v(y) = e−u|y| · e−v|y|

= e−(u+v)|y| = ˆPu+v(y).

It follows from the inversion theorem that Pu ∗ Pv = Pu+v. �

Theorem 2.3. ||F (· + iu)||p increases as u ↓ 0, for any p, 1 ≤ p < ∞. (if p = 1, consider
Pu ∗ µ). Similarly, if f is bounded, sup

x∈R
|F (x+ iu)| increases as u ↓ 0.

Proof: Let v < u be given. Let r = u− v ≥ 0. Then

||Pu ∗ f ||p = ||Pv+r ∗ f ||p = ||(Pr ∗ Pv) ∗ f ||p ≤ ||Pr||1||Pv ∗ f ||p = ||Pv ∗ f ||p. �

Lemma 2.1. Let fu(x) = F (x+ iu) be a harmonic function in the upper half plane such that

sup
u>0

||fu(·)||p = A <∞.

Then
fu+v(x) = (Pu ∗ fv)(x).

Proof: fu+v(x) = (Pu ∗ fv)(x) says that the values of F (u+ ix) at the level u+ v are the
values of F (u+ ix) at the level v convolved with the Poisson kernel with parameter u. 7

We may assume that F is real. Fix v > 0. Define G(x+ iu) = Pu ∗ fv(x) (G is the Poisson
integral of the values of F at level v). G(x+ iu) is harmonic in u > 0 and supu>0 ||G(·, u)||p ≤
||fv(·)||p <∞. Note that G(x+iu) has boundary value (pointwise limit) fv(x) as u→ 0, which
can be simply viewed as the value of G(x+iu) when u = 0. Therefore, G(x+iu)−F (x+iu+iv)
is a harmonic function in u > 0, satisfying supu>0 ||G(·+iu)−F (·+iu+iv)||p <∞, continuous
on the closed upper half plane and null on the real axis u = 0. Now, let

H(x+ iu) = G(x+ iu) − F (x+ iu+ iv).

We must show that H(x+ iu) vanishes for u > 0.
Let h ∈ L1(R)

⋂
Lq(R), where q is the conjugate exponent of p. Define

L(x+ iu) =

∫ ∞

−∞
h(x− y)H(y + iu)dy.

6If f ∈ Lp(R), 1 ≤ p ≤ ∞, and g ∈ Lq(R), 1

p
+ 1

q
= 1, then (f ∗ g)(x) exists everywhere, belongs to C(R),

and ||f ∗ g||c ≤ ||f ||p||g||q .
7In periodic case, Pr ∗ fs = frs is proved by using the fact that a harmonic function is the real part of an

analytic function.
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Then L(x+ iu) is continuous on the closed upper half plane, harmonic in the upper half plane,



16 KECHENG ZHOU AND M. VALI SIADAT

Therefore, {fu}, u > 0, is bounded in L1(R).

Sufficiency: By assumption, ||fu||1 ≤ K, i.e., ||fu(x)dx||M(R) = ||fu||1 ≤ K, ∀u > 0.
Since C0(R), as the pre-dual of M(R), is separable normed space, by Banach-Alaoglu theorem
the closure of {fu(x)dx} in M(R) is weak* sequentially compact. Therefore, there is a sub-
sequence {fvj}(x)dx of fu(x)dx that converges to some µ ∈ M(R) in weak* topology. That
is, ∫

h(e−it)fvj (t)dt→
∫
h(e−it)dµ(t), vj → 0

for each h ∈ C0(R). In particular, since for each x, Pu(x− t) ∈ C0(R),
∫
Pu(x− t)fvj (t)dt→

∫
Pu(x− t)dµ(t), vj → 0.

On the other hand,
Pu ∗ fvj (x) = fu+vj(x) → fu(x), vj → 0.

Hence, fu(x) =

∫
Pu(x− t)dµ(t) for all x.

We show that ||µ|| = limu↓0Au. Note that µ = limj→∞ fvj (x)dx in the weak* topology of
M(R) as the dual of C0(R). It follows that ||µ|| ≤ lim infj→∞Avj where Avj = ||fvj ||1 (For
a proof, see the Appendix). Since Au increases with u ↓ and Au ≤ K, ||µ|| ≤ limu→0Au.
Furthermore, the inequality cannot be strict. Note that fu = Pu ∗ µ and ||fu||1 ≤ ||Pu||1||µ||.
Therefore, Au = ||fu||1 ≤ ||µ|| for every u > 0. If the inequality were strict, we would have
Au ≤ ||µ|| < limu→0Au for u > 0, which is impossible.

As to the norm convergence of ||fu − µ||M(R) → 0 as u → 0, if µ is absolutely continuous

then µ = f(x)dx for some f ∈ L1(R). Hence fu = Pu ∗ µ is indeed fu = Pu ∗ f. Thus, by
Fejer’s theorem, ||fu − f ||1 → 0. That is, ||fu − µ||M(R) → 0 as u→ 0. �

3. The Plancherel Theorem

In this section we define

f̂(y) =
1√
2π

∫ ∞

−∞
f(x)e−ixydx.

Lemma 3.1. Let C be the collection of continuously differentiable functions with compact
support. Then C ⊂ L1(R)

⋂
L2(R) and C is a dense subspace of L2(R).

Proof: Let f ∈ L2(R). Define fk(x) = f(x) if |x| ≤ k; and fk(x) = 0 if |x| > 0. Then
fk → f in L2(R). Furthermore, we may choose an approximate identity with compact support

and continuous derivative, for instance, let h(x) = e−
1

x2 for x ≥ 0 and h(x) = 0 for x < 0.
Then h ∈ C∞(R) and φ(x) = h(x+1)h(1−x) ∈ C∞(R) and has compact support [−1, 1], and∫
φ(x)dx = 1, when properly normalized. Let en(x) = nφ(nx). Then en(x) is an approximate
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Proof: Let f ∈ C. Define f̃(x) = f(−x). Then f ∗ f̃(x) ∈ C. By the inversion theorem, at

every point x where (f ∗ f̃)(x) satisfies the Lipschitz condition, we have

(f ∗ f̃)(x) = lim
A,B→∞

1√
2π

∫ A

−B

̂f ∗ f̃(y)eixydy.

Since f ∗ f̃(x) ∈ C, it satisfies the Lipschitz condition at every point, in particular, at x = 0,
we have

(f ∗ f̃)(0) = lim
A,B→∞

1√
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Corollary 3.1 (Inversion Theorem). If f ∈ L1(R) so that f̂ ∈ L1(R), then for a.e. x,
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Lemma 3.8 (Multiplication Formula for L2(R)). If f, g ∈ L2((R) then

(3.4)

∫
f̂g =

∫
f ĝ.

Proof: Fix g ∈ L1(R)
⋂
L2(R) first. Let f ∈ L2(R) and fk ∈ L1(R)

⋂
L2(R) with

l.i.m.fk = f. Since ĝ ∈ L2(R),

∫
fkĝ →

∫
f ĝ. It follows from the multiplication formula for

L1(R) that

∫
fkĝ =

∫
f̂kg →

∫
f̂g.Hence for f ∈ L2(R) and g ∈ L1(R)

⋂
L2(R),

∫
f̂g =

∫
f ĝ.

Starting with this formula, for f, g ∈ L2(R), we approximate g by gk ∈ L1(R)
⋂
L2(R). �

Theorem 3.2 (Plancherel). The Fourier transform F is a unitary operator of L2(R) and the
inverse Fourier transform, F−1, can be obtained by (F−1f)(x) = (Ff)(−x) for all f ∈ L2(R).

Proof: We have already proved that F is an isometry, we only need to show F maps
L2(R) onto L2(R), i.e., E = {F(f) : f ∈ L2(R)} = L2(R). As proven before, E is closed.
Assume that E 6= L2(R). Then there exists g 6= 0, g ∈ L2(R) \ E, such that < g, f >= 0 for

all f ∈ E, or < g, ĥ >= 0 for all h ∈ L2(R). It follows from the multiplication formula that∫
hĝ = 0 for all h ∈ L2(R). In particular, taking h = ĝ ∈ L2(R), ||ĝ||2 = 0 = ||g||2 and g = 0

a.e., contrary to the assumption g 6= 0. Therefore, F is onto and so is a unitary operator of
L2(R). �

4. Appendix

4.1. Weak/Weak * Topologies in Linear Spaces. Let X be a topological linear space
and X ′ be its conjugate space of all continuous linear functionals on X. 9

The weak topology σ(X,X ′) on X is defined as follows:
Let F be a nonempty finite subset of X ′. Define

pF (x) = maxx′∈F |x′(x)|, x ∈ X.
pF (x) is a seminorm on X. σ(X,X ′) is the locally convex topology on X defined by the family
of all seminorms pF (x), where F ranges over all finite subsets of X ′. A base at x0 ∈ X for this
topology is given by sets of the form

U R
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A sequence {xn}
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Given a weak neighborhood U = Ub,ǫ(0) of 0, can we always find xmn ∈ A so that xmn ∈ U?

Observe that | < xmn, b > | = |b(m) +mb(n)|, which can be made as small as we wish. First

we choose m large enough so that |b(m)| is very small, then for this fixed m, choose n large
enough so that |mb(n)| is also very small.

Can we prove that there is no sequence of elements in A that converges weakly to 0? Given
any sequence of elements in A, we show that there exist ǫ0 > 0 and b ∈ l2 (i.e. there exists a
weak neighborhood Ub,ǫ0(0) of 0) such that for any l, we can always find an element a in this
sequence with subscript ≥ l such that a 6∈ Ub,ǫ0(0).

Consider a sequence, ξ, of elements of xmn ∈ A. If some integer, say l, appears infinitely
many times as the m-index of xmn ∈ ξ, then we choose b so that b(l) = 1, b(k) = 0 k 6= l. Of
course, b ∈ l2 and there is a (of course, infinite) subsequence {xln} of ξ with | < b, xln > | = 1.
If none of the integers appears infinitely many times as m-index in ξ, then the range of m-
index of elements xmn ∈ ξ is unbounded. We may extract a subsequence, call it η, of ξ so
that their m-indices form a (strictly) increasing sequence. Note that the range of n-index of
xmn ∈ η
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